

Software Reuse Between
 the

RCAS and SBIS Programs

Jeffrey S. Poulin

16 February 1995

 1.0 Introduction

This paper will present lessons learned from a coordinated reuse effort between the U.S. Army Reserve Compo-
nent Automation System (RCAS) program [1] and the U.S. Army Sustaining Base Information Services (SBIS)
program [6]. These two major Department of Defense (DoD) Management Information Systems (MIS) contracts
provided the opportunity for a significant multi-million dollar Reuse Cost Avoidance. This paper illustrates the
difficulties and benefits of program-to-program reuse as well as changes in current acquisition practices required to
institutionalize this approach. Finally, it discusses the successful transfer of some reuse assets (such as lessons
learned and software architecture) across RCAS and SBIS.

Keywords: Software Reuse, Software Architectures, RCAS, SBIS

 2.0 Background

In 1991 the Army Reserves awarded the Reserve Component Automation System (RCAS) contract to Boeing
Computer Systems. RCAS spans 10 years with a potential value of $1.8 billion. RCAS will provide an automated
information system that will support both the United States Army Reserve and the Army National Guard. RCAS
will supply these organizations with office automation tools such as word processing, electronic mail and
spreadsheets as well mission support tasks; i.e., Personnel Administration, Force Authorization, and Mobilization.
The RCAS program has entered its third year and has developed approximately 1.2 million source lines of Ada
code.

In June 1993 the US Army awarded Loral Federal Systems in Owego, New York (then IBM Federal Systems
Company) a contract potentially worth $474 million over 10 years to improve and standardize the active Army’s
day-to-day business functions. This Sustaining Base Information Services (SBIS) contract will overhaul the installa-
tion management functions carried out at over 100 Army installations, including areas such as logistics, finance,
personnel, training, and office automation (electronic mail, word processing, and spreadsheets). The contract will
help the Army move from proprietary operating environments to open systems standards-based configurations.
SBIS will soon complete the implementation of its initial suite of applications with delivery scheduled for the spring
of 1995.

This paper describes the cooperation between the SBIS team and members of the RCAS team who had primary
responsibility for development of the RCAS system software, application software, and databases.

 2.1 System architectures

Although this paper primarily deals with software reuse, it first helps to introduce the system environments in

–Not Approved for Release by RCAS or SBIS–

which each program operates.1

The RCAS system architecture hinges on independent site/installation local area networks (LANs) using the
TCP/IP protocol; National Guard and Reserve sites connect to a wide area network (WAN) asynchronously via
modems. Individual users locally process office automation, applications, and database software running on one or
more computers, depending on the size of the site. This processing will primarily take place on DEC 5000 series
servers running MLS+, an operating system based on the DEC version of the UNIX, Ultrix 4.2. Users obtain
access to RCAS via X Terminals from the HDS Corporation or via personal computers, such as the Zenith 486.
RCAS currently operates multi-level mode security at the “confidential” level with the requirement to operate at the
“secret” level upon delivery of the first application code.

The SBIS system architecture hinges on an installation LAN using the TCP/IP protocol; installation LANS
connect to an Army WAN. Individual users locally process SBIS functions on two or more computers, depending
on the size of the site. This processing will primarily take place on NCR 3450/3550 servers running the UNIX
System V.4 operating system, with users obtaining access via X Terminals from the HDS Corporation. Users may
also access SBIS via personal computers, such as the AST Premium 486.

The programs met their contractual requirements for standards-based solutions with diverse suites of commercial
products. Both programs must comply with Open Systems standards and must deliver applications with a
MOTIF/X Window interface. RCAS and SBIS will develop their applications in the Ada programming language,
for which both chose the Verdix Ada compiler. For requirements and high level design both use the Cadre Team-
work environment. For database support, both use Federal Information Processing Standard (FIPS) 127 Structured
Query Language (SQL) compliant databases, with SBIS choosing Oracle and RCAS choosing Informix. The two
programs also use many similar or identical products, tools, supporting application packages, and software develop-
ment environments.

 2.2 Software architectures

Although components may have certain attributes which make them easier to reuse, external factors, such as
context, also determine reuse potential. In other words, the ability to reuse a given component depends on how
well the target software environment matches the environment which produced the component. Although RCAS
and SBIS have certain mission requirements in common and run on open system architectures, their software archi-
tectures also influence the opportunities for large scale reuse between the programs. The following sections give a
quick overview of the RCAS and SBIS software architectures as a prelude to identifying reuse opportunities.

 2.2.1 RCAS

As part of its pre-award demonstration the RCAS program initially developed prototypes of their applications
which ran as stand-alone Ada programs. However, they quickly found that the size of the applications and the
network load required to support the transfer of these applications seriously effected the cost and performance of
their systems. These experiences benefited the production system by leading to several key design decisions.
Recognizing that most of the applications consisted of common Graphical User Interface (GUI) and data manage-
ment software that remained virtually the same independent of application, they separated these functions into exe-
cutable processes that each of a user’s applications can share. This led to the RCAS application architecture shown
in Figure 1 [2].

1 The configurations and data presented in this paper reflect the state of the RCAS and SBIS programs circa June 1994. Both
programs have since evolved and altered these configurations.

–Not Approved for Release by RCAS or SBIS–

In the RCAS architecture, theWindow Object Manager (WOM), manages all GUI functions and user interaction
with RCAS applications. Every application that a user runs shares one copy of the WOM, thereby relieving appli-
cation developers of having to design, develop, or maintain that code. The WOM validates user input by field (e.g.,
allows only valid dates in a date field), checks every input the user attempts (e.g., preventing numeric entries in a
alpha field), and enforces a limited semantic verification on forms (e.g., ensures “start” dates precede “end” dates).

Likewise, a shared Data Object Manager(DOM) manages all accesses that a user’s applications make to the
RCAS database. This shields applications from the effect of any changes to data and relieves the applications from
each having to write SQL. Furthermore, this WOM/application/DOM design allowed RCAS to assign their best
Xwindow/MOTIF developers to the WOM, their best database/SQL developers to the DOM, and their best Ada
application developers to the applications. This architecture greatly reduced application size, network traffic, and
improved development of RCAS applications.

| Shared Mem |

 / \

 ---------- \ ----------

| | -------- | |

| Window | | App #1 | | Data |

| Object | Named -------- Named | Object |

USER | Manager | <---> ... <---> | Manager |

 | (WOM) | Pipes -------- Pipes | (DOM) |

| | | App #n | | |

| | -------- | |

 | | | |

 ----------\ ----------

 \ ----------

 | Support |

| Database |

Figure 1. The RCAS Application Architecture

The WOM, DOM, and applications communicate via named pipes for routine messages and via shared memory
for other messages. The use of shared memory obviates the need to transmit large messages; rather, the WOM can
simply transmit a message to the application saying that the WOM stored the required information at memory
location M. The WOM makes use of a support database which defines the rules and details of the behavior it must
take based on message types it receives from the applications.

Note how this architecture takes an object-oriented approach at the system level since each object in the system
runs as a separate process and communicates via messages. Also note how the well-defined structure provides a
common model for understanding the roles of each component in a standard RCAS application. Finally, RCAS
receives large amounts of reuse from the WOM and DOM which provide the domain-independent GUI and data
operations for all RCAS applications.

–Not Approved for Release by RCAS or SBIS–

 2.2.2 SBIS

The SBIS contract specifies delivery of approximately 80 MIS applications. Within those applications, SBIS has
identified numerous functions and processes that many SBIS applications will need. The SBIS software architecture
calls for the SBIS team to develop these common functions, or Service Objects, one time and make them available
to all the application developers. Table 1 contains a partial listing of the SBIS Service Objects.

The next step in the SBIS software architecture involves the observation that the SBIS can view the 80 applica-
tions as coming from eight primary domains:

1. Resource Management (10 applications)
2. Logistics (13 applications)
3. Operations and Plans (11 applications)
4. Personnel (18 applications)
5. Information Management (16 applications)
6. Installation Management (2 applications)
7. Engineering (4 applications)
8. Legal (10 applications)

Since applications will share functions within a domain, SBIS will provide a set of common domain-specific
objects, which SBIS calls Business Objects.Application developers will reuse these Business Objects in all or most
of the applications within a SBIS domain but will not necessarily find use for them outside the domain. Once SBIS
completes development of all Service and Business Objects, a developer only needs to writeApplication Objects to
provide the remaining software needed to implement the application.

Figure 2 shows how the objects work together in this architecture. The typical SBIS application consists of a set
of separately running processes which collaborate to deliver the function required; the figure depicts two applica-
tions running on a processor. The first application, AIMS-R, belongs to theOperations and Plans domain because it
consists of training management software. The second application, Safety, belongs to theInformation Management
domain. Both applications make use of several existing SBIS Service Objects, such as the Printer and Data Man-
agement Service Objects. Notice that many other Service Objects may run concurrently on the processor whether
or not explicitly used by our two example applications.

The figure also shows that the AIMS-R application uses three existing Business Objects from the domain of
Operations and Plans and that the Safety application uses two existing Business Objects from the domain of Infor-
mation Management. In this example, the developer must only write the remaining AIMS-R and Safety
Application-Specific Objects to implement the respective applications.

Figure 2. Two Applications Running in the SBIS Architecture

Like RCAS, SBIS also took a system-level object-based approach in the design of its application architecture.
Inter-object communication in SBIS takes place in one of two ways. The first method uses Remote Procedure Calls
(RPCs) and has the advantage of conforming to the Open System standard for distributed process management.

Table 1. Partial listing of the SBIS Service Objects

Scheduling Help Data Validation Access Control

Adhoc Query Mail Correspondence/Forms Error Handler

Audit Trail Print Manager Print Queue Manager Data Abstraction

Batch Processor File Transfer Directory Services External Devices

Initialize/Terminate Report Generator Common Screens Business Graphics

Data Conversion Communications Forms Generator External Interface Mgr.

–Not Approved for Release by RCAS or SBIS–

Most objects in the diagram communicate via RPCs. The second method involves physical linking of objects and
works best when performance requirements dictate real-time response. In the diagram, the Audit Trail Service
Object gets linked into the two Business Objects shown because the audit functions need to take place quickly and
linking will have the least performance impact on the normal operation of the application.

3.0 Opportunities for Reuse

In some cases RCAS and SBIS delivered common architectural or functional components to their respective
customers. Because of this, there existed a tremendous opportunity to reuse significant amounts of software and
thereby save the government a correspondingly large amount of money. Because RCAS has a two year lead over
SBIS and because of a Congressional mandate for exclusively new development on RCAS, more of the opportu-
nities for reuse occur from RCAS to SBIS. Therefore, SBIS could mostly benefit through reduced costs and
chances to improve its product delivery schedule. However, both programs could benefit from the prestige of
sharing an architecture and working together in a manner unprecedented in the DoD.

Numerous opportunities for software reuse of low-level functions could take place over time given a cooperative
effort. Supporting software developed by RCAS could serve in the Service Object and Business Object layers of
the SBIS model. Application code for RCAS could transfer directly to the Application Objects of SBIS. Several of
the RCAS architectural components mirrored those identified for development by SBIS.

After several technical exchanges between RCAS and SBIS, the SBIS software architects became convinced that
SBIS could benefit from the WOM, DOM, and some of the other designs and software developed by RCAS. In
May 1994 SBIS requested the following from the RCAS Program Office:

1. Window Object Manager (WOM)
2. Data Object Manager (DOM)
3. External Interface Manager (EIM)
4. Data Synchronization Manager (DSM)
5. Print Management System (PMS)
6. Navigation Application Broker (NAVAB)
7. Electronic Signature Function
8. Continued technical liaisons on topics such as legacy system interfaces.

Note that the value of this effort extends far beyond code. Other benefits include simply exchanging experi-
ences. For example, RCAS solved numerous problems or limitations of the Ada compiler, database, and other
development tools that SBIS would also have to solve. RCAS established interfaces to the many Army legacy
systems that SBIS would have to establish, and RCAS created high-performance images of many Army and DoD
forms that SBIS would need to duplicate.

 3.1 Business Model

In financial terms, estimates showed that the Army could benefit from $1-2 million [4] in Reuse Cost Avoidance
(RCA) as defined in [3], [5]. Independent of the assumptions made, there existed a tremendous business case for
large scale reuse. The WOM alone consists of 21k lines of source code; this component represented just one of
many large reuse opportunities.

–Not Approved for Release by RCAS or SBIS–

3.2 The benefits of experience

Although difficult to quantify, some members of the RCAS team very cooperatively and successfully transferred
numerous helpful insights to the SBIS team. Over the course of several technical meetings, the management and
developers of the RCAS application software revealed how they handled many technical issues the SBIS teamed
currently faced and warned SBIS of situations which would eventually arise. Although the RCAS program had to
solve these issues, their openness prevented SBIS from having to do so. Examples include:

1. Each program sought to ensure consistency both within and across applications so every application has the
exact same look and feel. To accomplish this, RCAS developed a thorough GUI style guide. However, they
discovered programmers still found ways to interpret the guide differently even though the guide appeared clear
and obvious. They recommended SBIS make early and concrete steps to define and control access to allowable
X widgets and GUI code.

2. Despite detailed interface agreements with legacy systems, RCAS found that legacy systems owners change
their interfaces (often without notice) faster than developers can reasonably write software to accommodate
them. To deal with this situation, RCAS coded a separately running External Interface Manager (EIM) that
inputs a description of the legacy system’s data format. This allows RCAS to rapidly adapt to most interface
changes without writing any additional Ada code.

3. Extensive discussions focused on user interface considerations. In the RCAS design, a single module manages
all data integrity checking for the applications (e.g., only allows dates input to a date field). Keeping integrity
checking in one place guarantees consistency to the user, allows all applications to share the integrity checking
software, and ensures all applications only work on valid data.

4. Separating the GUI access to the WOM means application programmers (Ada specialists) do not have to learn
the X event loop process. RCAS stressed separating not only applications and data, but also applications from
the database, applications from security software, etc. Not only does this lead to well-engineered software, it
allows management to focus their organization’s software skills by assigning the most qualified developers to a
component.

5. Due to multiple problems with Ada shared libraries, RCAS recommended limiting their use. SBIS had planned
to use this technique.

6. Both programs experienced Ada task-signal and Xwindow event signal conflicts. RCAS discussed several
approaches they had tried, including forcing Xwindow events through UNIX sockets and writing code to
replace the Verdix interrupt service queue at runtime.

4.0 Lessons learned from attempting reuse across large programs

Many organizations have made attempts to promote software reuse within the DoD through the use of centralized
reuse libraries and technology transfer programs. To date, these attempts have not produced large scale reuse
opportunities nor associated savings. This paper describes an attempt to bring a different paradigm to promote
software reuse. The effort planned organized and coordinated activity across two programs that could produce
predictable savings with low risk. Rather than designers and developers randomly searching for suitable compo-
nents, program-to-program reuse could result in an engineered, direct exchange of plug-compatible assets. This
paper offers the following lessons for those attempting a similar effort:

–Not Approved for Release by RCAS or SBIS–

Lesson #1 - Start early

To succeed in program-to-program reuse one must start early; it requires 6-12 months to establish a formal
agreement between two programs. While many visionaries readily support the fundamental concepts of software
reuse and its associated benefits, the majority of people actually working on DoD contracts remain highly skeptical
of this new way of doing business. These people recognize the important unresolved issues in working with other
programs and experience shows that they have well-founded concerns.

Lesson #2 - Address technical and managerial issues simultaneously

Many experts and organizations have addressed the technical and managerial barriers to software reuse. In
program-to-program reuse these issues overlap. For the technical staffs to freely exchange ideas or software they
first must have management support at many levels. The hierarchical culture within DoD contractors and the DoD
itself demands that one address the concerns of each person who may see any possible effect of the effort. In
general, staff members seeking to initiate reuse should not do so without the consent of their management and the
management of their customers. Unfortunately, in the time it takes to obtain support and finalize a formal exchange
agreement, architects may have to make design decisions which would inhibit reuse between the two programs.
One must start early on both issues.

Lesson #3 - Start with architectures, not software

While most reuse programs focus strictly on software components, experience shows that other assets should
come first. Reusing software from another program requires an understanding of the decisions that directed the
design of that program’s software architecture and its associated components. First, the use of individual software
components often depends on the overall context in which they originally appeared. Exchanging these domain-
specific design decisions must precede any exchange of software. A shared, common architecture for MIS would
facilitate the reuse of software across programs. Second, technical exchanges and transfer of “lessons learned” will
assure the engineers on the receiving program that the assets meet their needs and will help mitigate the tendency to
reject assets due to the “not invented here” syndrome.

Lesson #4 - Build technical rapport

Program-to-program reuse works best with face-to-face working groups between developers and technical team
leads. The agreements of upper level management and formal Memorandums of Understanding (MOUs) make the
exchanges possible but do not necessarily makereuse possible. Technical rapport leads to understanding of each
program’s software, confidence in each other’s products, and trust. Placing assets in a reuse repository in the hope
that another program with find and use them cannot substitute for rapport between professionals. Future reuse
efforts should focus on encouraging technical exchanges.

Lesson #5 - Acquisition policies must support reuse

The use of the RCAS software architecture on SBIS could go beyond short term savings. Having a common,
proven architecture would open the door for high levels of reuse on many future MIS systems. However, the tight
schedules on programs and the natural tendency to focus internally indicates that these programs need support,
encouragement, and incentives. Changes in acquisition policies need to address how the DoD approaches large
scale reuse by providing guidance on how to implement and encourage reuse across future software development
programs. For example, contracts should clearly state financial incentives (and penalties) for sharing resources with
(or not supporting) similar programs.

–Not Approved for Release by RCAS or SBIS–

Lesson #6 - Provide independent, continued support

In addition to written contractual agreements, program-to-program reuse initiatives need vigorous support from
an independent arbiter outside both program offices. Because of increasing competition between programs for
funds, parochial interests will still arise. An independent agency or executive office can ensure the programs con-
tinue to act in the best interests of the government.

Lesson #7 - Education

Education on program-to-program reuse issues may help resolve concerns but the education must take place well
before making contact between programs. If this does not happen, the education will only consume time and not
have an impact. The current DoD reuse education and courses offered by organizations such as the Defense Infor-
mation Systems Agency (DISA) and the Army Reuse Center (ARC) can help by educating the all levels of program
management of both government and government contractors.

 5.0 Conclusion

In attempting program-to-program reuse between RCAS and SBIS, many people asked questions for which we
had no easy answer. These questions often represent unacceptable risks to the programs involved in such a venture
[4]. Program Managers find these risks unacceptable because they encompass the DoD core metrics of schedule,
cost, and quality. Once two programs agree to exchange assets they become dependent on each other. Who retains
responsibility for a schedule slipping? Which program bears the cost of maintaining the assets? Will assets that
become difficult to integrate reflect badly on one program or the other? Changes to acquisition policies can help
ameliorate these questions.

The technical exchanges that provided the foundation for this effort succeeded in passing valuable experiences
between programs. These experiences helped validate and influence the decisions that ultimately will lead to better,
cheaper solutions for the Army customer. Future programs can also benefit from the lessons presented here to help
make large scale reuse in the DoD a reality.

 6.0 References

[1] Arya, Pamela K., “Software Reuse on RCAS,”Proceedings of the 6th Annual Workshop on Software Reuse,
Owego, NY, 2-4 November 1993.

[2] Arya, Pamela K., “The RCAS Software Architecture and Its Relation to Reuse,”Tri-Ada’94, Baltimore, MD,
6-11 November 1994, pp. 388-395.

[3] DISA/JIEO/CIM, “Software Reuse Metrics Plan,”Defense Information Systems Agency, Joint Interoperability
Engineering Organization, Center for Information Management,Version 4.1, 4 August 1993.

[4] Endoso, Joyce, “Just say yes? RCAS execs decline to share code with SBIS rivals,”Government Computer
News, Vol. 13, No. 15, 18 July 1994, pp. 1, 69.

[5] Poulin, Jeffrey S. and Joseph M. Caruso, “Determining the Value of a Corporate Reuse Program,”Pro-
ceedings of the IEEE Computer Society International Software Metrics Symposium,Baltimore, MD, 21-22
May 1993, pp. 16-27.

[6] Poulin, Jeffrey S., “SBIS Reuse Strategy,”Loral Federal Systems Sustaining Base Information Services doc-
umentation, 22 March 1994, available from the Army Reuse Center (ARC) Defense Software Repository
System (DSRS), (703)275-6368.

–Not Approved for Release by RCAS or SBIS–

Dr. Jeffrey S. Poulin
Loral Federal Systems

 MD 0210
Owego, NY 13827

 Voice: (607)751-6899
 Fax: (607)751-2597

 Internet: poulinj@lfs.loral.com

–Not Approved for Release by RCAS or SBIS–

