
Preface to: Component Reuse in Software Engineering (C.R.u.i.S.E.)

Welcome to Component Reuse in Software Engineering (C.R.u.i.S.E.), a product of the Reuse in
Software Engineering (RiSE) Group. RiSE has taken on the formidable task of studying and
establishing a robust framework for software reuse, and this book is a milestone achievement in
that mission. The following pages contain an extremely thorough review and analysis of the field
of reuse by collecting and organizing the major works into a cogent picture of the state-of-our-art.

However, this book is much more than just a very thorough compendium of reuse research.
CRuiSE actually traces the history of our field from the nascent thoughts credited to McIlroy in
1968 right up to the present. In taking the reader through this history, CRuiSE touches on all the
key phases in the evolution of reuse, from library systems, organizational issues, domain
analysis, product lines, component-based engineering, to modern architectures for reuse. In
each phase, the leaders in our field have poised numerous concerns and problems that remain to
be solved. CRuiSE has retained the questions as posed by the original researchers, but also
adds new analysis and a current perspective. While it is impossible to cite every single source,
the authors have very effectively summarized and analyzed the important works, placing them in
context along with the other related works at the time.

One thing that CRuiSE will immediately impress upon the reader, as it did me, is the amazing
amount of literature and accumulated knowledge that exists in reuse. It is refreshing and with a
bit of nostalgia that I again review the landmark articles and read about the first large-scale,
practical reuse programs at industry-leading companies such as Hewlett-Packard, Motorola, and
IBM, where I began my real hands-on experiences in this exciting field. I particularly like the use
of timelines throughout the book to show the progression of the issues in these articles and
relationship of the major accomplishments.

In addition to this evolutionary progression, CRuiSE analyses the omnipresent issues that
challenge the successful introduction of reuse into every organization. These issues range from
best practices in development processes, component certification, to library system search and
retrieval. Of course the book presents metrics for determining both the value of reuse and the
level of reuse practiced by an organization. This topic is near and dear to my heart because of
the important role that metrics play in software development and even in helping to encourage the
practice of reuse. In this regard, CRuiSE is equally valuable to the practitioner seeking to institute
a reuse program in their company or organization.

CRuiSE not only faithfully traverses the history and past issues surrounding reuse, but the book
also gives a thorough analysis of modern practices. There is an entire chapter dedicated to
Component-Based Software Engineering (CBSE), which I believe is a key technology and mind-
set that organizations must adopt if they really want to use assets in more than one place. The
book extends CBSE into one popular modern embodiment of CBSE; namely, Service Oriented
Architectures (SOAs). Whereas in the past, reuse has often been stymied by competing
technologies (such as COM, CORBA, RPCs, etc.), the classic SOA leverages the worldwide
acceptance of web technology and open protocols. So rather than a plethora of incompatible
standards, suddenly we have universal adoption of a common architecture and development
process. The future of reuse has never looked so bright!

Although reuse is, strictly speaking, the use of un-modified software assets, this book also
discusses the important relationships between re-engineering and reuse. Re-engineering, often
referred to as “white box reuse,” might reduce up-front development costs but, as many of us
know, changing any part of a component can often cost more than just starting from scratch.
Nonetheless, there are times that modifying an existing component becomes unavoidable.
CRuiSE nicely summarizes the issues that arise in these situations, to include version control
problems, reduced quality, and the proliferation of software that needs to be maintained.

CRuiSE is a must-read for students and researchers prior to beginning any new work in the field.
Why? Because simply studying the state-of-the-art is not enough to advance the field. To move
forward, researchers need to truly understand the string of successes and failures that shaped
where the field is today. Likewise, the wise practitioner would have this book handy to
understand the rationale behind a “best practice” that might be questioned as he or she rolls out a
reuse program for their company. Quite simply, the history of these findings, failures, and partial
successes determines the reason why we do things the way we do.

In conclusion, CRuiSE makes one message very clear:

Software Reuse depends on systematic processes and tools.

In other words, reuse doesn’t happen by accident. The research described in this book focuses
on issues ranging from technology to management and even to human behavior. Each issue has
enjoyed the focus of many experts, and with the benefit of lessons and detailed information
contained in CRuiSE, you will much better understand the systematic processes and tools that
you need for success in your organization.

Dr. Jeffrey S. Poulin
jeffrey.poulin@lmco.com
Lockheed Martin Distribution Technologies
Owego, NY

